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Abstract Kev developments in the understanding of the
immune functions of milk and colostrum are reviewed.
focusing on their proteinaceous components. The topics
covered include the immunoglobulins. immune cells.
immunomodulatory substances. and antimicrobial proteins.
The contributions of new technologies and the introduction
of fresh approaches trom other fields are highlighted. as are
the contributions that mammary biology research has made

to the development of other fields. Finally. a summary of

some current outstanding questions and likely future

directions of the field are given,
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Introduction

The concept that milk. mammary secretions and the
mammary gland have major roles in immune defense is
an old one. The bactericidal property of milk vas recorded
in the scientific literature in the late ninereenth century {1,
2]. Moreover. observations at this time on the ability of
milk to provide immunity to the newborn [3] played a kev
role in the development of modern immunology. The aim of
this review is to provide a modern audience with a timeline
for the key discoveries in milk immunology. illustrating
hovw. the current understanding of the immune function of
milk evolved. and t offer some pointers for the future
direction of the field.

This review is divided into three sections: the immuno-
globulins and immune cells, immunomodulatory compo-
nents. and antimicrobial components. covering elements of
both innate and adaptive immunity. immune defenses in the
mammary gland and the participation of the mammary
gland in the mucosal defense svstem. In this we focus
largely on the proteinaceous components of milk. some of
which are depicted in Fig. 1. Reviews describing physical
barriers. the role of probiotics. and the carbohydrate and
lipid components of milk that have host defense functions
have recently been presented clsewhere [4. s].

[Immunoglobulins in Milk

Today it is largely forgotten that the immune properties of
milk helped lay the foundation of modem immunology. In
1892, Paul Ehrlich demonstrated that mice immunized
against plant toxins passed immunity to the fetus in utero as
well as via the milk. These abservations w ere subsequently
shown to be due to an ammonium sulfate precipitable
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components ol the host defense svstem in milk and colostrum.

substance. termed an antibody [6]. Ehrlich extended this
work te develop the concept of passive and active
immunisation via antibodies. for which he was avarded
the Nobel Prize in 1908. Many other researchers made
important contributions through this earlv period (see
Campbell and Petersen [7] for an excellent reviev of the
history of immune milk). For example. Famulener (-]
showed that goats immunized prior to parturition could
transmit this immunity to the sera of their offspring via
colostrum and that this transfer could also take place if goat
serum was fed. Further experiments around this time
established the concept of passive immunisation through
the transter of milk-derived antibodies from the intestinal
lumen into the bloodstream. Colostrum was shown to
contain a greater concentration of antibodies than mature
milk. and the origin of these substances from serum was
confirmed [Y]. The importance of colostrum in providing
protection from bacterial infection was shown by Smith and
Little [10] who reported that a calt deprived of colostrum
lacks “something™ which allowed intestinal bacteria to
invade the body and multiplyv in various organs. Allied
waork showed that this “something™ was specitic agglutinins

(substances causing agelutination of cells) in the blood.
derived from the mather’s milk [11],

[t was appreciated early on that there were signiticant
differences between mammals in the immunological func-
tion of the mammary gland. For example. it was noted that
colostrum was important for immune transfer to the newbom
only in mammals with multi-layered placentae (for example
the ungulates) [12 14]. In these species. the antibodies were
shown to be absorbed into the bloodstream via the neonatal
intestinal mucosa in the first 24 48 h of lite [15]. Thus. by
1930, the role of the mammary gland in conferring
protection to the neonate through the accumulation and
secretion of agglutinating antibodies directed against
pathogens was firmly established.

The bivalent strycture of antibodies and the nature of
their interaction with antigens were gradually elucidated
through the 1940s. The highly specific nature of the
antibodies in mammary secretions was demonstrated
through analysis of the antibodies in colostrum fed to
calves that had died from infections with different strains of
E. coli [16]. While the presence of antibodies in milk and
colostrum was indisputable. at this time there was still
debate over their source and the nature of the therapeutic
benefit that could be derived from them [7, 17].

The development of polvacrylamide gel electrophoresis
and size-exclusion chromatography by the 1960s areath
accelerated the characterisation of the immune components
of milk. These techniques led to the definition of individual
classes of immunoglobulins (i.e. the agglutinating globulins)
as well as comparisons between species. Thus. in sheep the
predominant antibody in colostrum was shown to be le(y
[I8]. while in humans it was [gA [19]. Moreover.
mammary secretions and serum were shown to have
distinet immunoglobulin compositions (see Table 1). De-
spite much additional data being accumulated. there were
still questions about the fundamental reason for the
difference in milk immunoglobulins between species.

In the 1960s. Campbell and Petersen [7] were enthusiastic
advocates for the therapeutic benefits of colostrum and milk

Table 1 Comparison ol levels of immunoglobulin in human and cow colostrum, milk and serum.

Species Ig Concenuation (g i) Yool ol Ig
Colostrum Milk Serum Colostrum Milk Serum
Human® leCr 043 0.04 12.10 20 3.0 TR0
[gA 17.35 .00 250 9.0 7.0 10.0
lgM 1.59 0.10 (.83 N0 10.0 6.0
Cow” leGs, 4640 0.58 11.20 755 1.6 47.0
laGi- 287 006 9.20 47 T M6
lgA 536 0.08 0.37 B 9.9 .6
TeM 6.77 0.09 3.03 1.0 il [2:8

1

. - "
fg immunoglobulin, *[207, 7 [21].
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from immunized cows. In particular. and moest controver-
sially. svstemic responses to oral consumption of immune
milk were claimed. with beneficial effects on svmptoms of
arthritis and hay fever [7]. This work was commercialized
by Ralph Stolle, \\lmse company (hip:
com) stll markets “hyperimmune milk”
day.

The origin of the immunoglobulins in milk was the
source Campbell and Petersen
believed that the majority of antibodies in bovine mammary
secretions were svnthesized within the udder. They based
this premise. in part. on their abservation that “adequate”
numbers of plasma cells are present in the udder mmedi-
ately before parturition [20]. Hov ever. later w orkers found
only low levels of plasma cells {21]. These differences may

have been due to differences in the health status of the
gland between the experiments. Others favoured a humoral
source of the immunoglobulins in colostrum and milk {171
based on the observed decrease in serum immunoglobulin
levels before parturition and a corresponding increase in the
udder [22]. While IgG was shown to be transported to the
mammary gland from the serum. [gA was found to be
synthesized within the mammary gland by plasma cells
which had migrated into the gland trom the gastrointestinal
tract (see below). It was found that in species where [oG s
transterred to the foets prior to birth (e.o 2. humans), IgA i
the predominant i immunoglobulin in u)lmn um, whereas in
those born with no circulating [2G (e.g. cattle and sheep),
lgG s the predominant immunoglobulin in colostrun. A
[0-fold incre
trum over that in serum suggested a specific lgGy transport

ww s smbimilk.
to the present

of some controversy.

ase in the 1gGy:leGs ration in bovine colos-

mechanism [23].
By the 1970s. the mechanism for the transport of lgG
into the mammary gland had been elucidated. The IgG
receptor, FeRn. was identified and shown to be present on
the apical surface of the gut of the suckling rat [24] as wel]
as on the basolateral surtace of the secretory epithelial cell
during colostrogenesis [25]. Immunohistochemical analvsis
showed that FeRn expression coincided with Stage |
lactogenesis (the onset of colostrogenesis) and was de-
creased during stage
secretion: [20]).
The hormonal re

2 lactogenesis (the onset of copious

gulation of immunoglobulin transport
into colostrum and milk has been inv estigated but remains
incompletely described. Smith and co-workers [27] sug-
gested that changing serum concentrations of estrogen and
progesterone in late pregnancy exerted a controlling
influence on the selective transport of IgG, to bovine
lacteal fluid and thus colostrum formation. However. others
suggested that the rate of lgG, wansfer was a consequence
of mammary gland development (28], which is itself under
the control of estrogen and progesterone, [nvestigation into
the role of prolactin in IgG transport showed that i the

presence of the prolactin release inhibitor. bromoergocri p-
tine. colostrum-like secretion continued post-partum  for
several davs and mammary lgGy receptor activity was
maintained [26]. Addition of prolactin to mammary cells in
culture resulted in down- regulation of the receptor [29].
Thus. it seems that prolactin plays a role in regulating the
leG, receptor during Stage 2 lactogenesis. However.
regulation of the induction of 12G receptor during Stage |
lactogenesis remains poorly understood.

Advances in the knowledge of cellular immunity in
mucosal tissues led to greater understanding of the origins
of plasma cells in the mammary gland. These cells were
shown to migrate into the mammary gland from the gut-
associated lvmphoid tissues (GALT) [30]. Adoptive transfer
studies revealed that Ivmphocytes from the GALT populate
many mucosal effector sites inciuding the mammar v gland.
The precursors of plasma cells destined to produce [gA
were shown to originate from GALT and traffic mto the
mammary gland near the time of parturition as well as in
middle and late lactation [31]. In the late 19705 the concept
of the “common mucosal immune system” was proposed
[32] in which the antigenic experience at one mucosal
surface was deemed to lead to effector responses at a distant
mucosal  tissue, was supported by the
discovery of cell surtace receptors and cvtokines. Thus.
the idea emerged that cellular immune defense in the
mammary gland 1
integrated system.

a concept that

a local feature of an organism-wide

In the mouse. T-cell migration to the mammary gland
was shown to be mediated by mucosal addressin cell-
adhesion molecule-1 (MAJCAM-[) expressed on the
mammary vascular endothelium [33]. while leA plasma
cell recruitment was found to be facilitated by vascular cell-
adhesion molecule (VCAM-1) [34]. These adhesion mole-
cules were found to be present in ditferent proportions in
the ruminant mammary gland [35]. possibly accounting for
some of the differences betveen species of the immuno-
globulin isotypes in colostrum or milk. Recent studies have
established a role for chemokines in directing immune cells
to the mammary gland. Mouse mammary tissue has been
shown to express the CC LE.\ (MEC) chemokine receptor,
which binds to the CCR10 ligand on IgA lvmphoeytes [36].
Despite these advances. the nature of the stimulus for the
trafficking of IgA plasma cells from the intestine to the
mammary gland,
unknown,

Transport of IgA from immune cells in the ma mmary
gland into colostrum and milk has been elucidated. Kev to
this was the identification of the polymeric immunoglobulin
receptor (plgR). a transmembrane glycoprotein selectivel:
expressed on mucosal and secretory epithelial basolateral
cell surfaces. Earlier studies had identified a ‘secretory
component” that was linked to dimerie IgA following its

particularly in late- -pregnancy, is as vet
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secretion into mucosal tluids [37]. This secretorny compo-
nent was later identified as the extracellular domain of
plgR. The transport of [gA involved binding to plgR at the
basolateral membrane. passage to the apical membrane then
release into the alveolar lumen by cleavage of the complex.,
with IgA remaining linked 0 secretory component [3x].
The plgR protein was found to function as a sacrificial
receptor. with one molecule of plgR svnthesised for every
molecule of immunoglobulin secreted. The production of
pleR appears o limit the amount of leA that is transported.
Transgenic mice overexpressing plgR in their mammary
glands had double the [gA concentration in their milk
compared with non-transgenic mice [39]. The expression of
pIgR was shown to be under endocrine control in seme
tissues [40]. Prolactin and glucocorticoids were shown to
enhance mammary plgR protein and mRNA levels during
lactation in the sheep [41].

Secretory component was found to be important for the
function of IgA. When bound to IgA. it conferred
protection from proteolytic degradation in the intestine
[42. 43], and its presence facilitated localization of IgA to
mucus [H]. Free seeretory component has antimicrobial
properties in its own right. It vas first isolated from boevine
milk [43] and subsequent studies have demonstrated that it
binds to fimbrial colonization factors on bacterial surfaces.
thereby reducing their pathogenicity [46]. Free secretory
component also binds the cyvtokine [L-X thereby moditving
the pro-inflammatory effects of this cviokine (47].

Immunomodulatory Properties of Milk

The immune cells in milk are an imponant aspect of the
immunomodulatory activity of milk. The presence of cells
in milk and their association with mammary infection was
described in the early twentieth century [4%. 49]. However.

the types of cells. their origin and their role in prevention of

infection “within the gland were debated for many ears,
particularly in non-bovine species. Significant advances in
immunological analytical techniques eventually led to
characterisation of the cell types in milk of humans as veell
as several other species. It is now clear that the cells in

mammary secretions of all species studied consist of

neutrophils. macrophages. lymphocvtes and a smaller
percentage of epithelial cells. In general. macrophages are
the major cell population in milk from the healthy lactating
mammary gland. whereas neutrophils predominate during
early inflammation. These cells play an important role in
signalling the presence of pathogens to the systemic
immune system and thereby mounting a local immune
response against pathogens.

Neutrophils and macrophages also phagocviose and kill
bacteria directly. and this activite is enhanced by opsonic

:__:_ Springer

immunoglobulins and complement present in milk. By the
1970s. most components of the complement svstem were
described in human [30] and bevine milk and colostrum
[51].

The immune cells in milk mav also modulate the
neonatal immune syvstem. This idea was first raised as a
result of observing an increased level of neutrophils in the
colostrum  of non-nursing mothers in the absence of
infection [32]. Evidence of transter of tuberculin sensiti ity
to suckling infants [33] was used to support this hy pothesis.
as was transfer of partial tolerance and graft-versus-host
reactions in rodents [34]. Subsequernt studies have con-
firmed that milk cells can traverse the neonatal intestinal
epithelium in a range of species [53. 56]. However. other
studies found no evidence for transfer of cells across the eut
[57] or tuberculin-sensitivity via milk [38].

A more recent explanation for modulation of the neonatal
immune system via the cells themselves. is the production of
soluble immune mediators. These “lvmphokines™ were first
described in the 1980s and shown to stimulate the immune
cells in the suckling animal [3&. 39]. Many swdies have
since revealed the large range of these proteins (now termed
“eytokines™) present in human colostrum or milk. These
include IL-15. IL-6. 1L-8. TL-10. [1L-12, 1L-18. IFN-v,
TINF-&. TGF-p. G-CSF, M-CSF. GM-CSF. These cvio-
kines are thought to regulate the neonatal immune svstem
in a variety of wavs. For example. TGF-B has been
proposed to reduce inflammatory reactions in the gut [60].
to reduce allergy [61] and to stimulate intestinal [gA
production [62]. Cyokines are also present in cow’s milk.
with increased levels during infection (reviewed in [63]).

The advent of recombinant technology enabled the
production of cyvtokines such as [-1. 1L-2. 1FN-y and
GM-CSF which induce higher numbers of neutrophils and
macrophages when infused into the bovine udder. This
finding has led to the idea that cviokines may he used as
immunotherapy for prevention of mastitis in cattle. but to
date none have been commercialized tor routine use.

In vitro studies carried out over the last 20 vears suggest
that the repertoire of immune factors in milk also includes
immunomodulatory peptides derived from caseins or whey
proteins. These peptides are receiving much attention as
pessible sources of “natural” bioactivity with health benefits
for the consumer (see [64]). Casein peptides have also been
used to stimulate the innate immune svstem within the
mammary gland and prevent infections within the udder of
cows at drying oft [65]. However. peptides from the Al
variant of [3-casein have been proposed to be involved in
the development of tvpe | diabetes. an auto-immune
related disease. largely on the basis of epidemiological
evidence [66].

In the 1980s. nucleotides were found in milk and
proposed as potential immune regulators. By the mid
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1980s. dietary nucleotide nucleosides were shown 1o
modulate cell-mediated immunity and prevent infection in
animals [67]. Since then several infant feeding studies using
formula supplemented with nucleotides suggest they
can influence immune cell development and reduce the
incidence of diarrhea.

Long chain polv-unsaturated fatty acids (LC-PUFA)
such as DHA (docosahexaenoic acids) and EPA (eicosa-
pentaenoic acid) were also identified in the [980s as
possible candidates for immune modulation. This notion
was based on the observation that the diets of Eskimo
children have a high proportion of fish containing these
fatty acids. as well as a low incidence of asthma [N
Subsequent studies have shown that infants fed formula
supplemented with DHA also have decreased incidence of
bronchitis than infants fed un-supplemented formula [69].
Supplementation of a mother’s diet with LC-PUFA 10
enhance the immunomadulatory profile of breast milk is
also receiving interest as a means (o modify the infant’s
immune system [70)].

A common feature of the studies over the vears 1s that
human milk is a rich source of many of the above-
mentioned immunomaodulatory components. The elucida-
tion of many of these compounds was driven by the idea
that breast-feeding prevents gastrointestinal and respiratory
infectious disease in infants. as mitially documented in
1930s [71]. This concept has now been broadened to
include potential role of immunomedulatory elements in
development of atopic discase (allergy) in children. Con-
centrations of LCPUFA. cytokines. nucleotides and poly-
amines in breast milk have all been associated with
development of atopy in infants. In addition. the proportion
of neutrophils is significantly higher and macrophages is
lower in milk from mothers with an infant suffering from
atopic dermatitis [72]. As human milk cells are a major
source of some of the cvtokines. it is possible that this
finding could explain the link between evtokines and
allergy. In some studies. an infant’s risk of developing
allergy has been linked to the mother, but not the father.
having an allergy [73]. Thus, the association of a specitic
cvtokine or fatty acid profile in breast milk with subsequent
development of atopy in infants may simply relate to the
mother’s history of atopy.

Interestingly, one study has suggested a reduction in
atopic dermatitis in at risk infants (when at least one parent
has an allergy) after 6 months feeding of a partially
hydrolysed infant formula as opposed to breast milk [74].
In addition. 1t has been suggested that prolonged
(7.5 months) exclusive breast-feeding of high risk infants
has been associated with increased risk of IgE mediated
food allergy, asthma and atopy. and atopic dermatitis {73,
although shorter periods of breast-feeding are likely to be
protective [76]. These observations support the notion that

the reduction in exposure of the infant’s immune svstem Lo
foreign antigens at critical time points may be as important
as the supply of immune factors from milk in the
subsequent development of allergy i the infant. Much
further work in these areas will be required to unravel the
role of immune factors in calostrum and milk and
development of mucosal immunity in infants,

Antimicrobial Proteins in Milk

Initial characterisation of the bactericidal components in
milk was carried out in the 1920s. In 1922, Alexander
Fleming [77] described a bacteriolvtic activity which was
present in a number of biological fluids. which he named
lvsozyme. Not long after. this activity was also described in
milk [78]. About this time, what appeared to be a distinet
antimicrobial action in milk was also described. This
activity against streptococei was termed “lactenin®™ [79].

Improved techniques for protein analvsis in the 19403
and 1950s led to the characterisation of these activities. The
bactericidal activity of Ivsozyme was shown to be largelv
due to its ability to digest the complex polvsaccharide
component of the bacterial cell wall (reviewed in [RO]). The
isolation of Ivsozyme from human and cow's milk was
reported in the 1960s [81. X2]. with human milk hay ing by
far the greater abundance. Milk was shown to contain at
least two distinet lactenins [83]. One of these was an
oxidase. termed lactoperoxidase [N4]. which had earlier
been purified from cow’s milk [83]. Lactoperoxidase was
subsequently shown to have antimicrobial activity against
streptococei in the presence of peroxide and thiocvanate
[X6]. thereby contributing to the antimicrobial activity of
miik.

Other milk antimicrobial activities were also discovered. A
fraction of cow’s milk with a distinctive red colour was
described in 1939 [87] and iron-chelating activity in milk was
noted in 1951 [S5]. Later workers characterised the protein
responsible and termed it red milk protein, lactotransferrin,
lactosiderophilin or lactoferrin. Lactoferrin was shown o
have a bacteriostatic effect against £, cofi [N9] as well as the
fungus. Candide albicans [90]. The antimicrobial properties
of lactoterrin were attributed to s ability to sequester iron
from the surrounding solution, thereby depriving bacteria of
a mineral necessary for its growth, Xanthine oxidoreductase
activity was first reported in milk. in (902 [Ui]. Its
antimicrobial activity. when supplied with exogenous sub-
strate, was demonstrated in 1943. and was attributed to the
formation of peroxide [92, 93]

As a result of these studies. by the mid 1960s. there was
an appreciation that the defense property of milk was more
complicated than simply the presence of immunoglobulins
(94, 93], Nevertheless. immunoglobulin transter to the
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neonate still dominated most studies on this topic at that
time.

Further work in the 1970s providzd more detail as to the
function and biological role of antimicrobial milk proteins.
Lactoferrin was found to be present in a number of
additional secretions and fluids that are subject to patho-
genic challenge [V6]. as well as in neutrophils [97]. which
play an important role in host defense. The level of
lactoferrin in cow’s milk was shown to rise significantly
during mastitis [9%]. The iron binding properties. predom-
inance of the apo form of the protein in milk and the iron
sequestering mechanism tor its bacteriostatic effect vere all
corroborated [V9. 100]. Lactoferrin was also shown to have
bactericidal as well as bacteriostatic activity, and that it
could act on a wider range of microbes than just £ co’f
[101]. Its antimicrobial activity was found to be due in part
to alternative mechanisms such as membrane disruption,
which was attributed to proteolytic cleavage products of
lactoterrin. termed lactoferricing [102]. Lactoferrin has also
been shown to have activity against a range of viruses. an
activity that appears largely due to its binding to viral
particles, thereby blocking virus entry to the cell (reviewed
in [103].

The bactericidal actions of the enzymes in milk have been
characterised in greater detail. The substrates for lactoperox-
idase. hvdrogen peroxide and thiocvanate, were shown 10 be
produced by streptococct and liver detoxification pathways
acting on dietary glucosinelates. respectively [104]. Lacto-
peroxidase was shown to produce a range of highly reactive
groups which were thought to react with and disrupt the
bacterial cell membranes (reviewed in [103, 100]). In
addition to streptococci. this antimicrobial svstem was also
found to act against a range of coliforms and Pseudomonas
species. providing there v.as a source of peroxide [107. 108].
Xanthine oxidoreductase was shown to contribute to the
lactoperoxidase antimicrobial system by supplving it with
hydrogen peroxide [109]. Further evidence for the host
defense role of xanthine oxidoreductase included: its
production of a range of potentially bactericidal reactive
oxygen species [110]: its increased abundance in neutrophils
during infection [111]: and its inhibition being associated
with an increase in microbial activity [112], Lvsozyme was
shown to attack the cell walls of Gram positive bacteria by
cleaving the glyeosidic bond of N-acetvimuramic acid within
the peptidoglyean molecule [113]. Lvsozvime was identified
in the secretory granules of neutrophils [114]. associated
with lactoferrin [113]. Proteolytic fragments ot the caseins in
milk were also shown to have antimicrobial activity
(reviewed i [116]). suggesting that the proteases in milk
as well as the major milk proteins themselves may also play
a role in host defense.

By the late 1990s. a considerable body of knowledge

had been accumulated as to the composition and mode of
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action of a range of antimicrobial proteins in milk. Yet. the
understanding of host defense in milk was essentially the
same as in the 1960s. However, around this time significant
new insights were gained into the nature of innate
immunity in vertebrates. These included the extensive
cross-talk between the innate and zequired immune system.
the first elucidation of the molecular mechanisms for
pathogen recognition and identification of compenents of
the signal transduction cascade leading to specific effector
responses (reviewed in [117]). Identification of some of the
components of host defense mechanisms in plants. insects
and amphibians led to the discovery of equivalent systems
m mammals, including the B-defensin and cathelicidin
families of cationic antimicrobial peptides (revieved in
[118. 119]). This rapid series of discoveries energized the
field of mammalian innate immunity. and provided a fresh
approach to investigating the host defense properties of
milk.

As a result, additional immune components of milk were
identified. Members of the f3-defensin family were found to
be expressed by mammary epithelial cells with expression
of their genes induced during mastitis [120, 121]. Members
of the p-defensin and cathelicidin families were also found
in milk and some at elevated levels in colostrum [122, 123].
A variant of an acute phase protein. serum amyloid A3, was
found to be expressed in mammary cells in response to
pathogens or pathogen-derived lipeteichoic acid and to be
present in milk during mastitis [124]. suggesting a role for
this milk protein in host defense.

The repertoire of putative immune factors i milk
continues to grow. A member of the RNAse tamily of
proteins. angiogenin, has been known to be present in milk
since the 1980s [125]. More recently, a host defense role
was claimed for this protein, based on the discovery that
mouse and human angiogenins have antimicrobial activity
[126]. This role in milk is still to be verified. but is
supported by the observation that other members of the
RNase family are found in neutrophils and have antimicro-
bial as well as antiviral activities [127. 128].

Future Directions

[t is almost axiomatic that much remains to be discovered
about the mnate host defense system in the mammary gland
and its secretions. The potential of the recently developed
technologies of genomics, transcriptomics and proteomics
to shed light en the biology of milk and the mammary
gland have vet to be fully realised. Gene expression studies
using microarrays and proteomics published to date have
revealed a hitherto hidden complexity of the host defense-
associated proteins in milk and the immune response of the
mammary gland [129 134], These techniques are likelyv to
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result in the identification of vet more components
contributing to the host defense property of milk and
colostrum,

A few fundamental questions remain to be answered.
The regulation of the milk host defense svstem is not well
understood. For example. the mechanisms responsible for
differences in the composition of colostrum and milk
between species and between stages of lactation have vet
to be described. It is conceivable that these might involve
epigenetic mechanisms. Also. the mechanisms by vwhich
pathogens are recognised by the host defense svstem is still
a relatively unexplored area. Proteins such as Lipopolysac-
charide Binding Protein (LBP) and Bactericidal Permeability-
Increasing Protein (BPI) have a key role in the svstemic
response to pathogens by binding to pathogen-derived
compounds and presenting them to receptors on immune
cells. It seems likely that an analogous svstem for pathogen
recognition exists in milk. but to date this has not been
described,

The biological roles of many of the knovn milk host
defense components have still o be fully elucidated. The
multifunctional nature of some of these has recently been
suggested. for example the immunomodulatory properties
of lactotferrin and some antimicrobial peptides known to be
present in milk [1350 136]. To date most work on the
proteins in mammary secretions has concentrated on the
suppression of pathogens. while other possible functions
have been under-represented in the literature. The immune
system is known to play a role in mammary development
and involution. as well as responding to neoplasia. It will be
interesting to learn to what extent the proteins in milk
contribute to these processes. Another current question is
the extent of co-operativity and complementarity between
the various components. as well as the nature of the
mechanisms by which collectively they suppress the
viability. growth. or virulence of pathogens of the mamma-
ri gland and neonatal GI tract. The possible synergies
between the different proteins have not been thoroughly
explored. Rather than consisting simply of immunoglobu-
lins and a few miner milk proteins with inherent antimi-
crobial properties. it is now perhaps appropriate to view the
defense system in mammary secretions s comprising a
single integrated svstem. Thus in the future the application
of a systems biology approach may be useful.

The host defense proteins in milk have many possible
practical applications. The use of bovine milk extracts as
natural food preservatives and functional food ingredients
are two potential uses. and these are already beginning to
be explored. One example of this is the supplementation of
infant’s formula and other consumer milk-based products
with lactoferrin. Individual components of milk are already
being used therapeutically. For example. colostral leG
purified from cows immunised with £ coli is being

marketed as a product to prevent travellers” diarrhea. [gA
has perhaps even more potential in this area. as it has better
stability in the GI tract {137]. In the future. milk proteins
with intrinsic bactericidal activity may be altematives or
supplements to traditional antibiotics. for which there is an
increasing need [138]. It has also been suggested that the
LPS-binding activity of lactoterrin could be used therapeu-
tically [139]. Other potential uses are in dairving. For
example. antimicrobial proteins have been expressed in
cow’s milk. either through production of transgenic cattle or
by transfection of mammary cells in vivo. thereby enhanc-
ing the animal’s resistance to mastitis (1400 141) 1t s
conceivable that in the futare, the level of the endogenous
host defense components in milk could be enhanced by
inducing their over-expression through animal management
approaches. Finally. detection of components of the host
defense in milk could conceivably be used to detect mastitis
in dairy cows. Similarly. their genes could be used as the
basis for genetic selection for resistance to mastitis. Each of
these applications has particular functional requirements
that will need to be met. Future work will determine to
what extent these potential uses are realised.
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